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Sinusoidal forcing of a turbulent separation bubble
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A turbulent separation bubble is forced by single- and double-frequency sinusoidal
disturbances, with the emphasis placed on the reattachment length as a function of the
forcing amplitude and frequency. The separation bubble is that formed along the side
of a blunt circular cylinder with a square leading edge. In single-frequency forcing, the
reattachment length attains a minimum at a particular forcing frequency, F, which
scales with the frequency of shedding of vortices from the reattachment region of the
separated shear layer. A flow model is presented to interpret the frequency F. Forcing
of sufficiently high amplitude eliminates the recirculating region in a range of the
forcing frequency. Flow visualization and a survey of the mean flow and turbulence
properties demonstrate how the flow in the separated shear layer is modified by the
forcing. In double-frequency forcing, the superposition of the F-component on its
higher or subharmonic components is considered. A non-resonant combination of the
two frequencies is also considered.

1. Introduction

The separation of flow from a solid surface is encountered in a number of flow
configurations such as aerofoils at high angles of attack, turbomachinery cascades at
off-design flow rate, sudden expansions in flow passages, dump combustors, cars and
trains, buildings and structures subjected to winds, etc. Separated flows are highly
turbulent and unsteady owing to the evolution of vortices in the separated shear layer.
The separation of flow in turbomachinery, for example, produces the unfavourable
flow unsteadiness, noise, and loss in efficiency. On the other hand, a high level of
turbulence associated with separated flows enhances heat and mass transfer, and
mixing; this property is favourable for combustors and heat exchangers. However, the
separation of flow should be avoided in most engineering applications. When it is
unavoidable, the separated region should be reduced as much as possible. This is the
reason why control of flow separation and separated flows has been studied for many
years, as extensively reviewed by Gad-el-Hak & Bushnell (1991).

Separated flows can be classified into two categories : separated flow with
reattachment and without reattachment. A typical example of separated flow with
reattachment is the flow around a backward-facing step, while an example of separated
flow without reattachment is the flow around a circular cylinder. The former is
characterized by the interaction between the separated shear layer and the nearby solid
surface, while the latter is characterized by the interaction between two shear layers
emanating from the separation lines.

The purpose of the work described in this paper is to study sinusoidal forcing of a
separated flow with reattachment, which will be referred to as a separation bubble,
with the purpose of obtaining information on active control of separated flows. The
separation bubble downstream of the square leading edge of a blunt cylinder whose
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axis is aligned with the main flow is chosen here as a simple case. This flow includes
no end effects, which are unavoidable in its two-dimensional version, namely the
separation bubble downstream of the square leading edge of a blunt plate. Moreover,
these two separation bubbles without artificial forcing have basically similar properties
as discussed by Kiya (1989) and Sigurdson (1995).

Most of the essential properties of the forced separation bubble have been discussed
by Sigurdson (1995) and Sigurdson & Roshko (1988). They have measured the pressure
drag acting on the front face of the cylinder as a function of forcing amplitude and
frequency, showing that the drag attains a broad minimum at a particular forcing
frequency, which will be referred to as the most effective frequency, for a fixed value
of the forcing amplitude. They suggest that the minimum occurs when the initial
separated shear layer is used to amplify the forcing, creating structures that amalgamate
to form a final structure with the frequency of the shedding-type instability f

v
. This

frequency is irrelevant compared to the initial Kelvin–Helmholtz frequencies at high
Reynolds numbers. The mechanism which determines the most effective frequency is
the shedding-type instability. Sigurdson and Roshko argue that the shedding-type
instability is similar to the instability which leads to the periodic vortex shedding from
two-dimensional bluff bodies, being also true for separation bubbles downstream of a
backward-facing step and the square leading edge of a blunt plate, and for separated
flows around aerofoils. The most effective frequency is found to be 2 to 5 times the
shedding frequency f

v
.

In the present paper, the reattachment length of the separation bubble is employed
as a measure of the effectiveness of sinusoidal forcing. Sigurdson (1995) has been
concerned mostly with the drag of the front face, concluding that the drag responds to
the forcing frequency in a basically similar manner to the reattachment length. In this
paper a flow model is presented to explain the most effective frequency in terms of the
frequency of the shedding-type instability f

v
. This model supplements Sigurdson’s

(1995) discussion on the most effective frequency. Furthermore, double-frequency
forcing is studied in this paper. Preliminary results of this investigation were reported
by Kiya et al. (1993, 1995), and Shimizu et al. (1993).

Sigurdson’s (1995) paper includes an extensive list of references on forced separation
bubbles, which interested readers should consult. Here mention will be made of
investigations on the forcing of simple separation bubbles other than those mentioned
above: flows downstream of a backward-facing step (Bhattacharjee, Scheelke &
Troutt, 1986; Roos & Kegelman 1986, 1987), the square leading edge of a blunt plate
(Parker & Welsh 1983; Cooper, Sheridan & Flood 1986; Stokes & Welsh 1986) and a
sharp-edged inlet to a pipe (Sutton et al. 1981), and separated flows around aerofoils
(Zaman, Bar-Sever & Mangalam 1987; Huang, Maestrello & Bryant 1987; Bar-Sever
1989; Nishioka, Arai & Yoshida 1990). Roos & Kegelman (1987) have shown that the
reattachment length attains a minimum at a forcing frequency which depends weakly
on the forcing amplitude.

The flow configuration is shown in figure 1. A blunt circular cylinder of diameter d
is placed in the main flow of velocity U¢. The cylindrical coordinates x, r, } are
employed, where x is the longitudinal distance along the axis of the cylinder, r is the
radial distance, and } is the azimuthal angle about the axis x¯ 0; the origin is at the
centre of the front face of the cylinder. The boundary layer separated from the square
leading edge reattaches, in terms of the time-mean flow, onto the surface of the cylinder
to generate the separation bubble. The x-coordinate of the reattachment position is
denoted by x

R
; the distance between the separation edge and the reattachment position

is referred to as the reattachment length.
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F 1. Cross-sectional view of the blunt circular cylinder and definition of the coordinate system.
The inclined double-ended arrow indicates oscillating flow in the slot produced by the woofer.

The arrangement of the paper is as follows. In §2 experimental apparatus and
methods are described. Results for the single-frequency forcing are presented in §3, and
those for the double-frequency forcing are presented in §4. The results are discussed in
§5. Finally, §6 is the conclusion.

2. Experimental apparatus and method

2.1. Wind tunnel, circular cylinder, and data acquisition

The experiments were performed in a closed-return wind tunnel with a 1±5 m wide,
1±2 m high and 6±0 m long working section. The ceiling of the working section was
shaped so as to realize a negligibly small longitudinal presure gradient. The free-stream
turbulence intensity was 0±2–0±3% at speeds of 5–20 m s−". The acoustic pressure level
measured near an air breather at the end of the working section was 0±5–1±2 Pa in the
same range of speed. No significant peaks were found in the spectrum of the velocity
fluctuations in the main flow or that of the acoustic pressure.

A blunt circular cylinder with diameter d¯ 0±200 m and length of 2±00 m was used
in the experiment. The cylinder was constructed from Plexiglas, consisting of a front
disc 1±0 cm in thickness and a circular pipe 0±5 cm in thickness (figure 1). The front disk
was bevelled by 45° towards the downstream side to form a knife edge, being set in
position by a screw device. The upstream end of the circular pipe was bevelled by 45°
in a manner shown in figure 1, so that a slot was formed between the front disc and
the circular pipe. The width of the slot was set equal to 2±75³0±05 mm, where the error
is the r.m.s. deviation in the azimuthal direction. The length of the cylinder is more
than 6 times the reattachment length of the unforced separation bubble (see §3.1), so
that an unsteady separated flow downstream of the blunt trailing edge of the cylinder
is assumed to have negligible effects on the flow in the leading-edge separation bubble.

A woofer was installed inside the cylinder as shown in figure 1; this was driven by
a power amplifier with a sinusoidal output of controllable frequency and amplitude to
introduce a sinusoidal velocity disturbance into the separated shear layer. For the
double-frequency forcing, a signal synthesizer was used to produce two sinusoidal
outputs of different frequencies and amplitudes with an arbitrary phase difference. The
two sinusoidal outputs were added and then supplied to the power amplifier. The
amplitude of the velocity fluctuation measured, with the main flow off, at the centre of
the slot by an I-type hot-wire probe was uniform within ³18% and ³2% at the
forcing frequencies of 20 Hz and 100 Hz, respectively.

The cylinder was installed into the working section along its central axis, being set
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in position by four piano wires 0±9 mm in diameter at three longitudinal stations
x}d¯ 2±3, 7±0 and 9±5. Vibration of the piano wires due to the periodic vortex shedding
was prevented by attaching flags of a thin scotch tape at a number of different positions
of the wires. The exact alignment of the cylinder was found by matching time-mean
pressures recorded on four pressure tappings located along the circumference with an
angle of 90° at the station x}d¯ 2±0. The time-mean and r.m.s. velocities in the
unforced separation bubble were sufficiently axisymmetric (Kiya et al. 1991). The
axisymmetry of the forced flow was demonstrated by a surface-flow visualization using
tuft probes.

The blockage of the cylinder was only 1±7%. Thus no attempt was made to correct
the blockage effect.

A single I-type hot-wire probe and a split-film probe (Thermo-Systems Inc. Model
1288) were used to measure the time-mean and fluctuating velocities. The hot-wire
probe was set normal to the (x, r)-plane, so that this probe measured the velocity
component in the same plane, say q*¯Q­q, where Q and q are the time-mean and
fluctuating components. The split-film probe was also set normal to the (x, r)-plane
with its plane of split normal to the main-flow direction. Thus this probe detected the
intermittent reversal of the local-flow direction, being used to obtain the reverse-flow
intermittency near the surface. Each probe was mounted on a traversing mechanism
inside the test section.

Data acquisition was by the use of a personal computer, which also controlled the
traverse of the probes. The data were AD-converted and stored on a magnetic disc,
being analysed later on the computer and on a real-time signal processor.

Flow visualization was by a smoke wire, and by tuft probes distributed on the
surface of the cylinder. The smoke wire was situated near the surface, parallel to the
x-axis.

The experiments were performed in the range of Reynolds number Re3U¢ d}ν¯
(0±69–2±76)¬10&, which approximately corresponded to the main-flow velocity
U¢ ¯ 5±0–20±0 m s−". The flow visualized by smoke was at the lower Reynolds number
Re¯ 1±4¬10%.

2.2. Definition of forcing amplitude

The amplitude of a sinusoidal velocity disturbance generated by the forcing was
defined at a position near the separation edge in the presence of the main flow. For the
determination of this ‘reference’ position, the velocities Q and q« (which is the r.m.s.
value of q) were measured in the unforced flow along a longitudinal line at r¯ d}2
upstream of the separation edge. Results are presented in figure 2. The time-mean
velocity Q attains a sharp maximum at the edge of the boundary layer at separation,
which could be a candidate for the reference position. At this position, however, q« is
of the order of 10% of the main-flow velocity at Re¯ 2±76¬10&, so it was suspected
that the sinusoidal velocity disturbance due to the forcing might be overcome by this
turbulence. Thus the position (outside the boundary layer) where Q is 90% of its
maximum value was chosen as the reference position; at this position q« is (0±006–0±009)
U¢ in the present range of Reynolds number. The reference position is only slightly
dependent on Reynolds number, being located approximately at (x}d, r}d )¯ (®0±008,
0±5). It may be noted that the same distributions of Q and q« were not measured in the
forced flow. Thus it is not clear whether the reference position is still a well-behaved
position in the forced flow.

At the reference position, the velocity fluctuation generated by the forcing was
sinusoidal to the extent that its power spectrum had a sharp peak at the forcing
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F 2. Distributions of (a) time-mean velocity Q and (b) r.m.s. fluctuating velocity q« of
unforced flow near the separation edge. D, Re¯ 0±69¬10& ; ^, 1±38¬10& ; *, 2±76¬10&.

frequency with insignificant peaks at higher- and sub-harmonics. Thus the velocity
fluctuation due to the forcing q is written, for the single-frequency forcing, as

q¯ q
"
sin (2π f

"
t),

and, for the double-frequency forcing, as

q¯ q
"
sin (2π f

"
t)­q

#
sin (2π f

#
t­φ),

where q
"

and q
#

are forcing amplitudes, f
"

and f
#

(" f
"
) are forcing frequencies, φ is

phase difference, and t is time. In the double-frequency forcing, q
#

was chosen to be
equal to q

"
for simplicity. The forcing level is represented by the r.m.s. amplitude

q!

"
¯ q

"
}o2 for both the single- and double-frequency forcing. Samples of the velocity

fluctuation q and its amplitude spectrum are shown in figure 3 for the single-frequency
and double-frequency forcing.

2.3. Definition of reattachment position

In this study, the reattachment position is defined as the position where the reverse-
flow intermittency measured near the surface I

r
attains the value of 0±5. The split-film

probe was used to measure the instantaneous longitudinal velocity along a longitudinal
line at 1 mm or 0±005d above the cylinder surface, I

r
being calculated from the time

history of this velocity. The present definition of reattachment position is different
from the conventional one that reattachment occurs at the position where the time-
mean surface shear stress is zero (Ruderich & Fernholz 1986). At the reattachment
position, however, both the time-mean longitudinal velocity U and its normal gradient
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f
"
¯ 140 Hz; (c) input voltage E to woofer, (d ) its spectrum A

E
; (e) q, and ( f ) its spectrum A

q
for

double-frequency forcing with f
"
¯ 40 Hz, f

#
¯ 80 Hz. The vertical axis in (b)–( f ) is arbitrary linear.

¥U}¥r are zero at the surface, so that U near the surface is approximately equal to zero
(see, for example, figure 15 of Ruderich & Fernholz 1986). Thus the position of
I
r
¯ 0±5 near the surface is expected to be a good approximation to the true reattach-

ment position. Indeed this definition of the reattachment position has been shown to
be in good agreement with a flow-visualization experiment (Kiya & Sasaki 1983).

3. Results for single-frequency forcing

3.1. Reattachment length as a function of forcing amplitude and frequency

The reattachment length x
R

is shown in figure 4 as a function of the forcing ampli-
tude and frequency. In figure 4(a), the forcing amplitude is in the range
q!

"
}U¢ ¯ 0±005–0±10, while it is in the higher range q!

"
}U¢ ¯ 0±12–0±20 in figure 4(b),

where the result for q!

"
}U¢ ¯ 0±10 is also included for comparison. The reattachment

length is normalized by that of the unforced flow x
R!

, which was (1±60³0±06) d in the
present range of Reynolds number; the forcing frequency is normalized in the form
f
"
d}U¢.
In the lower range of the forcing amplitude (figure 4a), the reattachment length
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attains a minimum at a particular forcing frequency which seems to depend slightly on
the forcing amplitude. This frequency will be referred to as the most effective frequency
F. Sigurdson (1995) has suggested that the drag acting on the front face of the cylinder
attains a minimum value at the same frequency F.

In the higher range of the forcing amplitude (figure 4b), the reattachment length
responds to the forcing frequency in a more complicated manner. It is noteworthy that,
for forcing amplitudes greater than q!

"
}U¢ ¯ 0±14, x

R
becomes almost zero in a range

of the forcing frequency (figure 4b). Thus, in this case, one cannot define a single
frequency as the most effective frequency F. Furthermore, it is interesting to note that
a dip of x

R
appears approximately at the frequency f

"
d}U¢ E 1±0.

The minimum reattachment length x
Rm

is plotted in figure 5 against the forcing
amplitude. For the amplitudes q!

"
}U¢ ¯ 0±12–0±15, the value of x

R
at the above-
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mentioned dip is also included. The minimum reattachment length can be represented
by the empirical formula x

Rm
}x

R!
¯®0±371 ln (q!

"
}U¢)®0±007 for amplitudes

q!

"
}U¢ % 0±12. Thus the maximum reduction in the reattachment length can be written

in the normalized form (x
R!

®x
Rm

)}x
R!

¯ 1±007­0±371 ln (q!

"
}U¢). This logarithmic

dependence is different from the linear dependence of the maximum reduction in the
drag of the front face (figure 13 of Sigurdson 1995).

The forcing frequency is extended up to f
"
d}U¢ ¯ 170 in figure 6. The reattachment

length is independent of the forcing frequency in the range f
"
d}U¢ " 80. This value

of 80 is approximately twice the frequency of the initial Kelvin–Helmholtz instability
f
KH

of the separated shear layer, which was approximately f
KH

d}U¢ ¯ 31 and 44 at
Re¯ 0±69¬10& and 1±38¬10&, respectively. The independence is because there is
no instability to amplify the forcing for a frequency greater than f

KH
, as discussed by

Sigurdson (1995). It is worth noting that x
R

attains a maximum greater by 4% than
that of the unforced flow at f

"
of the order of f

KH
}2. This feature remains to be

explained.
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F 8. Snapshots of flow visualized (a, c, e) by smoke (Re¯ 1±4¬10%), and (b, d, f ) by tufts on
the surface (Re¯ 0±69¬10&). (a, b) Unforced flow; (c, d ) flow forced by (q!

"
}U¢, f

"
d}U¢)¯

(0±10, 2±0) ; (e, f ) (0±20, 1±6). The white triangle indicates the reattachment position; white vertical
marks indicate positions x}d¯ 0±5, 1±0 and 1±5.

3.2. Flow field

Results will be presented mainly for the flow forced with the amplitude q!

"
}U¢ ¯ 0±20

in comparison with the unforced flow.
Figure 7 shows the reverse-flow intermittency I

r
plotted against x. At the fre-
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made by single I-type hot-wire probe, so that velocities are shown only in regions where reverse flow
is insignificant. Note that reverse-flow intermittency for these flows is shown in figure 7.

quency f
"
d}U¢ ¯ 1±6, I

r
is only slightly greater than 0±5 in a narrow region immediately

behind the leading edge x¯ 0, decreasing monotonically downstream of this region;
this demonstrates the existence of a very weak reverse flow only in this narrow region.
At higher values of f

"
a hump appears in the distribution of I

r
, as in the case of

f
"
d}U¢ ¯ 2±8. The height of the hump increases with increasing f

"
, so that I

r
attains

a distribution like that for f
"
d}U¢ ¯ 3±2. This change in the distributions of I

r

corresponds to the sudden change in x
R

at f
"
d}U¢ E 3±0, see figure 4(b). In the

intermediate range 2±8! f
"
d}U¢ ! 3±2, there exists a recirculating region detached

from the leading edge.
Figure 8 shows the flow visualization. The formation of large vortices by the forcing

and the reduction of the reverse-flow region are clearly demonstrated. The very short
separation bubble in figure 8(e) is accompanied by the formation of a compact and
strong vortex near the leading edge. This vortex interacts with the surface immediately
as it rolls up, travelling downstream without amalgamation. Thus the distance between
two consecutive vortices in figure 8(e) is equal to the wavelength of the disturbance
produced by the forcing.
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Distributions of the time-mean and r.m.s. velocities, Q and q«, are shown in figure
9. Note that these velocities were measured by the I-type hot-wire probe, so that they
are affected by the rectifying effects of the probe in a region where the flow is
intermittently reversed. Thus the velocities are shown only in regions where the reverse
flow is expected to be insignificant. It may be noted that I

r
is less than 0±1 at the position

of maximum r.m.s. velocity, r
c
, in the separation bubble of a blunt plate (Kiya & Sasaki

1983). This suggests that Q and q« in the region r& r
c
are fairly reliable because the

separation bubble of the blunt circular cylinder has basically similar properties to that
of the blunt plate (Kiya 1989). It may be noted that no time-mean reverse flow exists in
the forced flows (figure 9b, c) except for the narrow region behind the separation edge.

The maximum r.m.s. velocity is much higher in the forced flow than in the unforced
flow, amounting to approximately 0±40U¢ near the edge (figure 9b, c). This maximum
value is the same as that which can be realized in the separated shear layer forced by
an external sound wave (Nishioka et al. 1990). It is surprising that, at f

"
d}U¢ ¯ 2±8,

the maximum of q« appears at the edge of the shear layer in the region x}d% 0±8, while
in the other cases (figure 9a, b) the maximum appears at the position where ¥Q}¥r
attains a maximum, as would be expected in the separated shear layers (Kiya & Sasaki
1983; Ruderich & Fernholz 1986). This might be associated with the forcing-induced
flapping motion of the shear layer whose velocity fluctuation is superposed on that
generated by the forcing-induced vortices. The contribution of the flapping motion to
the overall velocity fluctuation possibly depends on f

"
even if q!

"
is fixed. Moreover, a

long tail in the profile of q« near the edge (figure 9b, c) demonstrates the extent to which
the disturbance produced by the forcing penetrates into the main flow.

Figure 10 shows the position of the edge of the shear layer r
e
and the position of the

maximum r.m.s. velocity r
c
. With forcing at q!

"
}U¢ ¯ 0±20, the distance between r

c
and

the surface is reduced by approximately 50% in the region x}d! 1±2 as compared to
the case of the unforced flow. The edge approaches nearest to the surface at the forcing
frequency f

"
d}U¢ ¯ 2±8.

The cross-correlation of q at two points separated in the circumferential direction,
R, is presented in figure 11. Here R is the cross-correlation at zero time delay, and ∆}
is the angle between the two points. R was measured near the edge of the shear layer
at the middle and the end of the separation bubble. However, in the cases of (q!

"
}U¢,
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F 11. Cross-correlation of velocity fluctuations q at two points at the edge of the shear layer,
R, for (a) unforced flow, (b) flow forced by (q!

"
}U¢, f

"
d}U¢)¯ (0±10, 2±0), (c) (0±20, 1±6), and

(d ) (0±20, 2±8). Re¯ 0±69¬10&. D, x¯x
R
}2 in (a, b) and x¯ d}2 in (c, d ) ; *, x¯x

R
in (a, b) and

x¯ d in (c, d ).

f
"
d}U¢)¯ (0±20, 1±6) and (0±20, 2±8), x

R
is so short that R is obtained at x¯ d}2 and

d. In the unforced flow, R is seen to be zero for angles ∆} "π}3. In the forced flows,
on the other hand, a long tail of positive R appears at x¯x

R
}2 and x¯ d}2, extending

up to ∆} ¯π (figure 11b, c) ; R decays much faster at the downstream positions
x¯x

R
and x¯ d. This indicates the enhanced axisymmetry of the rolling-up vortices

in the forced flows and the subsequent breakdown of the vortices. High values of R in
figure 11(d ) in the range of ∆} !π}3 suggest the formation of the most coherent
vortices in this case among the forced flows.

A measure of the circumferential coherence is given by the integral scale Φ that is the
integral of R with respect to ∆} from 0 to ∆}

!
, which is the value of ∆} where R first

becomes zero. If R is positive up to ∆} ¯π, ∆}
!

is taken as π. The integral scale is
shown in figure 12 plotted against x. In the unforced flow, Φ is fairly constant, being
of the order of 0±15π. However, in the forced flows, Φ attains a much higher value of
approximately (0±3–0±4)π at the positions x¯x

R
}2 and x¯ d}2. The sudden drop of

Φ at the downstream positions x¯x
R

and x¯ d reflects the breakdown of the rolled-
up vortices. After the breakdown, Φ becomes approximately the same for forced and
unforced flows. This value of Φ is equivalent to 0±17x

R!
, which happens to be

approximately equal to the distance between r
c
and the surface of the unforced flow

(which is a measure of the height of the separation bubble), namely 0±16x
R!

(¯ 0±26D,
see figure 10b).
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F 12. Distribution of the integral scale of the cross-correlation Φ. Re¯ 0±69¬10&.
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"
}U¢, f

"
d}U¢)¯ 0±01, 1±6) ; ^, (0±10, 2±0) ; D, (0±20, 1±6) ;

*, (0±20, 2±8) ; E, (0±20, 3±2).

1.0

0.8

0.6

0.4

0.2
0 0.5 1.0 1.5 2.0

xR
xR0

φ/ð

F 13. Reattachment length as function of forcing amplitude and phase difference for double-
frequency forcing. f

"
¯F, f

#
¯ 2F. Re¯ 0±69¬10&. D, q!

"
}U¢ ¯ 0±01; *, 0±02; V, 0±04; ^, 0±06;

x, 0±10. Horizontal line segments on the right imply the reattachment length for the single-frequency
forcing with f

"
¯F.

4. Results for double-frequency forcing

In the double-frequency forcing, the following combinations of frequencies are
studied: ( f

"
, f

#
)¯ (F, 2F ), (F, 3F ), (F, 4F ), (F}2, 2F ), (F,F­F}8), and (F®F}8,F ),

where F is the most effective frequency described in §3. It may be noted that, for the
last two combinations, the phase difference φ has no meaning.

Figure 13 shows the relation between x
R

and φ for the combination (F, 2F ). At low
forcing amplitudes q!

"
}U¢ ¯ 0±01 and 0±02, x

R
attains a maximum at φEπ, and a

broad minimum at φE 0. However, at the high amplitude q!

"
}U¢ ¯ 0±10, x

R
is

independent of φ, being approximately the same as that for the single-frequency
forcing with f

"
¯F. At intermediate amplitudes q!

"
}U¢ ¯ 0±04 and 0±06, a maximum of

x
R

appears at the smaller phase difference φE 2π}3. These properties will be discussed
in §5.2.

Results for the combination (F, 3F ) are presented in figure 14. The reattachment
length is seen to depend only weakly on φ. Moreover, x

R
is not much different from

the minimum reattachment length for the single-frequency forcing.
Results for the other combinations of frequencies are summarized in figure 15 for the

forcing amplitude q!

"
}U¢ ¯ 0±01. For all these combinations, x

R
appears to be

independent of φ. For the non-resonant combinations (F®F}8,F ) and (F,F­F}8), x
R
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"
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F 15. Reattachment length as function of φ for double-frequency forcing. q!

"
}U¢ ¯ 0±01.

Re¯ 0±69¬10&. D, ( f
"
, f

#
)¯ (F,F}2) ; *, (F, 4F ) ; V, (F}2, 2F ) ; —–—, (F®F}8,F ) ; – – –,

(F,F­F}8).

is approximately the same as the minimum reattachment length for the single-
frequency forcing with the equivalent r.m.s. amplitude q!

"
}U¢ ¯o2¬0±01.

5. Discussion

5.1. Interpretation of the most effecti�e frequency

As has been discussed by Sigurdson (1995), there are two instabilities in the separation
bubble : one is the initial Kelvin–Helmholtz instability, and the other is the shedding-
type instability. Owing to the shedding-type instability, large vortices are shed from the
reattachment region with the frequency f

v
. He presumes that the shedding-type

instability is the same as that which causes the periodic vortex shedding from two-
dimensional bluff bodies such as a circular cylinder. The frequency of the shedding-
type instability is a function of the velocity at the separation edge U

s
and the height of

the separation bubble obtained by Roshko’s (1954) hodograph method h, having the
universal value of f

v
h}U

s
¯ 0±08 (Roshko 1955). At high Reynolds numbers, f

v
is much

lower than and irrelevant compared to the initial Kelvin–Helmholtz frequencies f
KH

.
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Sigurdson (1995) suggests that the maximum reduction in the drag or in the
reattachment length occurs at the forcing frequency F given by Fh}U

s
¯ 0±08.

However, the most effective frequency in his experiment is 2 to 5 times the expected
value of 0±08 for the most amplified shedding frequency. He argues that the minimum
drag occurs when the initial shear layer is used to amplify the forcing, creating
structures that amalgamate to form a final structure with f

v
h}U

s
¯ 0±08. He also

suggests that the most effective frequency must be greater than the first harmonic of f
v
,

since each shed structure often consists of a pairing of the final two shear-layer
structures before reattachment.

To supplement Sigurdson’s (1995) discussion, a flow model is presented here to
explain the most effective frequency under two main hypotheses. The first hypothesis
is that the separation bubble is a self-excited flow maintained by a feedback loop, this
being the case for both the forced and unforced flows. When a large vortex impinges
on the surface in the reattachment region, a pressure fluctuation is generated,
propagating upstream with the speed of sound a. This pressure fluctuation is accepted
by the flow at the sharp separation edge, modifying the rolling-up of the shear layer.
This is the receptivity issue (Nishioka & Morkovin 1986). One may suspect that, if the
forcing amplitude is sufficiently high, the amalgamation of vortices produced by the
forcing would hardly be influenced by a disturbance accepted at the separation edge.
However, it is possible that the role of the forcing is just to produce the rolling-up
vortices, the subsequent amalgamation of the vortices being governed by the accepted
disturbance.

The above-mentioned feedback system can be formulated as follows. The pressure
fluctuation propagates from the reattachment position to the separation edge in the
time x

R
}a, generating a vorticity disturbance at the edge. This disturbance is convected

downstream with an average velocity U
c
to arrive at the reattachment position at the

time x
R
}U

c
. Thus the time x

R
}U

c
­x

R
}a should be equal to the integral multiple of the

period of the self-excited flow. If the fundamental frequency of this self-excited system
is taken as the vortex-shedding frequency f

v
, one obtains the feedback equation

x
R
}U

c
­x

R
}a¯N}f

v
, (1)

where N is an integer. With U
c
' a and N¯ 1 equation (1) reduces to

f
v
x
R
}U¢ ¯U

c
}U¢. (2)

The self-excited flow seems to be consistent with the concept of the impinging-shear-
layer instability suggested by Nakamura & Nakashima (1986).

In the unforced flow, the average convection velocity is U
c
}U¢ E 0±5 (Kiya &

Nozawa 1987), so that f
v
x
R!

}U¢ E 0±5. This value is observed in a wide range of
unforced separation bubbles (Cherry, Hillier & Latour 1984; Kiya 1989), suggesting
that the feedback mechanism is universal.

The forced flow can also be interpreted as the self-excited flow maintained by the
feedback loop, as demonstrated in figure 16 which is the vortex-shedding frequency
f
v
x
R
}U¢ plotted against the forcing amplitude. The fairly large uncertainty of the data

is due to the uncertainty in determining f
v
. Although f

v
x
R
}U¢ seems to decrease

slightly with increasing q!

"
}U¢, its average value is 0±46. The decrease in f

v
x
R
}U¢ is

conjectured to be due to the effect of those image vortices inside the cylinder whose
circulation is enhanced by the forcing, reducing the convection velocity.

The second hypothesis is that the minimum reattachment length is realized when the
vortex shed from the reattachment region has just been created by the nth
amalgamation of the rolled-up vortices right at the reattachment position, which is the
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longitudinal position of centre of the shed vortex. This is illustrated in figure 17 for the
case of n¯ 2. The value of n is a function of the forcing amplitude but cannot be
determined within the framework of this model. If two vortices are involved in each
amalgamation, the minimum reattachment length x

Rm
is given by

x
Rm

¯ 2nλ
m
, (3)

where λ
m

(¯U
c
}F ) is the wavelength of the disturbance produced by forcing with the

most effective frequency. This equation can be written in the form

x
Rm

F}U¢ ¯ 2nU
c
}U¢. (4)

Equation (3) is not inconsistent with the experiment, as shown in figure 18, in
which the reattachment length of the flow model is calculated by putting n¯ 2 for
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q!

"
}U¢ ¯ 0±005–0±03, n¯ 1 for q!

"
}U¢ ¯ 0±04–0±12, and n¯ 0 for q!

"
}U¢ ¯ 0±14–0±20 to

have the best fit between the model and experiment. Here it may be worth noting
that two minima of x

R
appear for q!

"
}U¢ ¯ 0±03–0±04 (figure 4a), which demarcate

n¯ 1 and n¯ 2.
Equations (2) and (4) yield

F}f
v
¯ 2n, (5)

if x
R

in equation (3) is put equal to x
Rm

. Equation (5) implies that the most effective
frequency scales with the vortex-shedding as discussed by Sigurdson & Roshko (1988)
and Sigurdson (1995).

The minimum reattachment length obtained from this flow model is shown as a
function of q!

"
}U¢ in figure 19. The uncertainty in the data is again due to that in

determining f
v
. The flow model is seen to yield the minimum reattachment length in fair

agreement with the experimental results.
The flow model discussed above is still a preliminary one, including a few

hypotheses. However, we feel that this can be a first step in constructing a more
reasonable theory on the forced separation bubbles.

5.2. The role of phase difference in double-frequency forcing

The effects of the phase difference on the reattachment length can be understood at
least qualitatively in terms of the response of a two-dimensional mixing layer to the
double-frequency forcing. This is not unreasonable because the height of the separation
bubble is less than 0±26D (figure 10b) and the circumferential integral scale Φ is less
than 0±4π (figure 12).

First, the case of the combination (F, 2F ) will be considered (figure 13). Riley &
Metcalfe (1980) have conducted a direct numerical simulation of the vortex-
amalgamation interaction in a time-evolving two-dimensional mixing layer forced by
a combination of the fundamental and the first subharmonic, whose amplitudes are in
the regime of linear instability. The fundamental frequency is the frequency at which
the linear instability mode has the maximum growth rate (Ho & Huang 1982). Riley
& Metcalfe (1980) demonstrate that, when the two components are in antiphase
(φ¯π), the vortex amalgamation is suppressed and replaced by a shredding
interaction, in which vortices generated by the fundamental are alternately shredded in
the straining field of the subharmonic. On the other hand, the vortex amalgamation is
most enhanced at φ¯ 0. This is the subharmonic resonance found by Kelly (1967).
Thus, if the fundamental and the first subharmonic are interpreted as the 2F- and
F-components in the forced shear layer of the separation bubble, the vortices produced
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(a, d ) x}d¯ 0±005; (b, e) x}d¯ 0±30; (c, f ) x}d¯ 0±60. The vertical scale is arbitrary linear.

by the 2F-component are expected to be alternately shredded by the straining field of
the F-component at φ¯π, while their amalgamation is most enhanced at φ¯ 0. This
is demonstrated by the evolution of the amplitude spectrum of the velocity fluctuation
q (see figure 20). The larger the vortices, the larger is the entrainment, so that the
maximum and the minimum of x

R
are expected to appear at φ¯π and 0, respectively.

This is the case for the low amplitude q!

"
}U¢ ¯ 0±01–0±02, as seen in figure 13.

The fact that x
R

becomes independent of φ at the high amplitude q!

"
}U¢ ¯ 0±10

(figure 13) seems to correspond to the finding of Raman & Rice (1989) and Paschereit,
Wygnanski & Fiedler (1995) in their studies of the double-frequency forcing of the
spatially evolving axisymmetric mixing layer of a round jet. In these studies the
momentum thickness is much lower than the radius of the nozzle, so that the mixing
layer can be interpreted as a plane mixing layer. Their studies show that an increase in
the forcing amplitude reduces the effect of the initial phase difference on the
amplification of the subharmonic. This suggests that, in the forced shear layer, the
effect of the F-component on the amalgamation of the vortices generated by the 2F-
component is independent of the phase difference at sufficiently high forcing
amplitudes. However, the shift of the maximum of x

R
towards the low range of φ at

the intermediate amplitudes q!

"
}U¢ ¯ 0±04–0±06 remains to be explained.

The insignificant dependence of x
R

on the phase difference for the combinations
(F, 3F ) and (F, 4F ) (figures 14 and 15) can be understood in terms of Inoue’s (1992)
numerical simulation of a spatially evolving two-dimensional mixing layer forced by a
double-frequency disturbance. He shows that the momentum thickness of the mixing
layer for (F, 3F ) and (F, 4F ) is independent of φ over a normalized longitudinal
distance from the edge of the splitter plate, say x*, of 75 and 110, respectively, while
for the combination (F, 2F ) the effect of φ on the momentum thickness appears at the
much shorter distance x*¯ 25 (see figure 13 of Inoue 1992). If the reattachment of the
separated shear layer were to occur earlier than x*¯ 75 for (F, 3F ), x

R
would be

expected to be independent of φ ; if the reattachment were to occur downstream of
x*¯ 75, x

R
would be somewhat influenced by φ. This may explain the result of figure

14. The same argument can be applied to understand the result of figure 15 for
(F, 4F ).
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6. Conclusion

The response of the leading-edge separation bubble of a blunt circular cylinder to
single- and double-frequency forcing has been studied experimentally. The response is
mainly described in terms of the relation between the reattachment length and the
forcing frequency and amplitude. In his recent paper on the same flow configuration,
Sigurdson (1995) concentrates on the reduction in the drag force acting on the front
face of a blunt circular cylinder by the single-frequency forcing. In the present paper,
the r.m.s. forcing amplitude q!

"
is varied from 0±5 to 20% of the main-flow velocity,

while the forcing frequency f
"
is extended up to more than four times the frequency of

the initial Kelvin–Helmholtz instability. In the double-frequency forcing, two
sinusoidal components have the same amplitude. The wide range of the forcing
frequency and amplitude has revealed several striking aspects of the forced separation
bubble.

The forced and unforced flows can be interpreted as self-excited flows maintained by
a feedback loop. This interpretation yields a simple expression for the frequency of
shedding of rolled-up vortices from the separation bubble f

v
as a function of x

R
and

U¢, see equation (2). This expression is compatible with equation (9) of Sigurdson
(1995), explaining why a fairly universal value of f

v
x
R
}U¢ E 0±5 is found in a wide

range of separation bubbles.
The reattachment length attains a minimum at a particular forcing frequency F

which is in the range 1±6–2±2 in the normalized form Fd}U¢ if q!

"
is less than 0±12U¢.

This most effective frequency F scales with the frequency of shedding of rolled-up
vortices from the separation bubble f

v
in the form 2nf

v
, where n is an integer depending

on q!

"
. Sigurdson (1995) seems to suggest the same relation between F and f

v
, but not

explicitly giving the factor 2n.
The minimum reattachment length x

Rm
is represented by a logarithmic function of

q!

"
}U¢. This is not the case for the maximum drag reduction, which is a linear function

of q!

"
}U¢ (Sigurdson 1995).

The reverse-flow region is almost eliminated in a range of the forcing frequency if
q!

"
}U¢ & 0±14. In this case, a compact vortex is formed right at the separation edge, as

demonstrated in figure 8(e) (also see figure 6b of Sigurdson 1995; figure 11 of Nishioka
et al. 1990) ; at the same time, the distance between the edge of the shear layer and the
surface becomes approximately half of that for the unforced flow.

The rolled-up vortices generated by the forcing are highly coherent in the
circumferential direction in the middle of the separation bubble, the integral scale Φ
being (0±3–0±4)π. However, the high coherence is quickly destroyed at the end of the
bubble, Φ reducing to approximately half of the above value. This reduced value
happens to be the same as that for the unforced flow.

The double-frequency forcing is most effective for superposition of the F-component
on its higher harmonic (2F ) in the sense that x

R
is most strongly dependent on the

phase difference φ. A minimum and a maximum of x
R

appear at φ¯ 0 and π,
respectively. However, the combination of the F-component and the higher harmonics
3F or 4F yields an insignificant dependence of x

R
on φ. It seems that these features can

be explained, at least qualitatively, in terms of the response of a two-dimensional
mixing layer to double-frequency forcing.
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